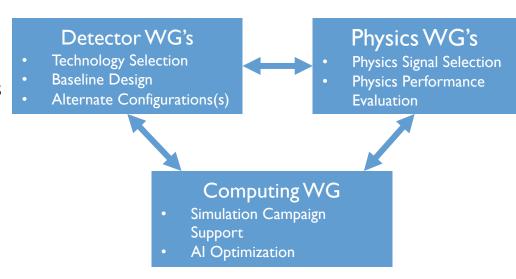


ECCE DESIGN OPTIMIZATION WITH AI

William Phelps for the ECCE Al Working Group

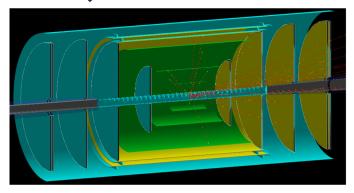

Christopher Newport University/Jefferson Lab

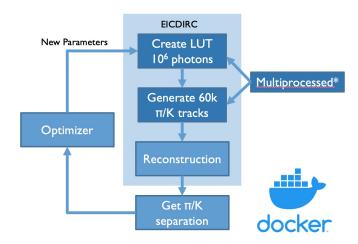
ECCE Al Working Group

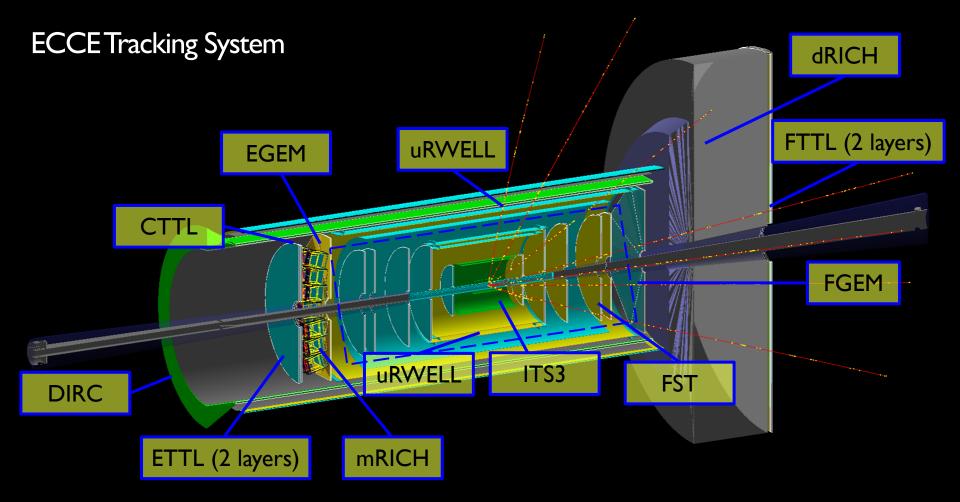
- Al Working group was founded as an initial part of ECCE (March 2021)
- During the proposal phase we are working with other working groups (physics and detector) to assist in detector design optimization
- In the future this scope could be expanded to include other Al applications as well (Al assisted tracking, etc.)

ECCE Al Working Group

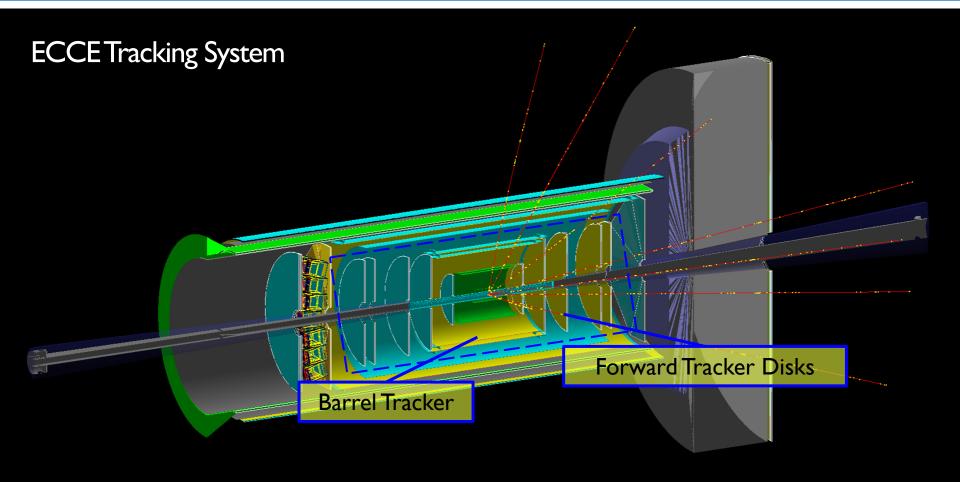
 Active group comprised of members from 6 institutions with more looking to participate

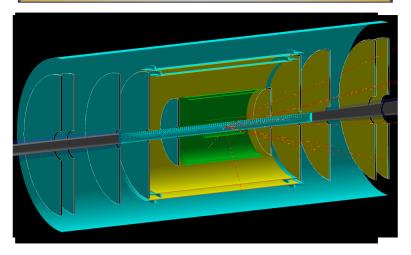

Active Projects


- Tracking (Brunel/MIT/Regina)
- DIRC (CNU/MIT)
- Zero Degree Calorimeter (JLab/Duquesne)
- Barrel Calorimetry (Regina/MIT)


Detector Optimization Projects

- Forward/Barrel Tracker
 optimization (Cristiano Fanelli and Karthik Suresh)
- DIRC Optimization (Andru Quiroga and W. Phelps)
 - Framework completed and ready to go, will work with DIRC group on future steps
 - Could use similar framework for other detector optimization projects as similar steps will need to be multiprocessed


All results shown are preliminary!



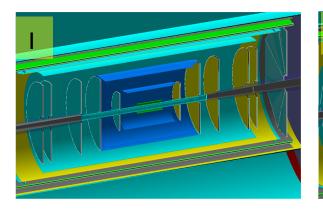
ECCE Tracking system Baseline Inner tracker

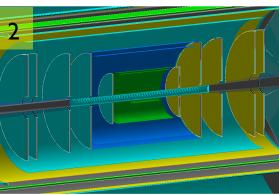
Barrel	Radii [cms]	Length [cms]	
Layer I	3.3	30.0	
Layer 2	5.7	30.0	
Layer 3	21.0	54.0	
Layer 4	22.68	60.0	
Layer 5	39.3	105.0	
Layer 6	43.3	114.0	

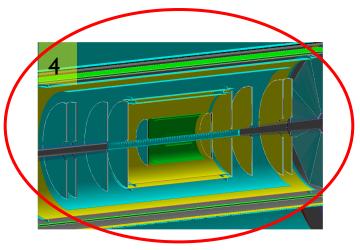
Forward Disks	Z position [cms]	RMin [cms]	RMax [cms]
Disk I	25.0	3.18	18.48
Disk 2	49.0	3.18	36.28
Disk 3	73.0	3.50	43.2
Disk 4	97.0	4.70	43.2
Disk 5	112.0	5.90	43.2

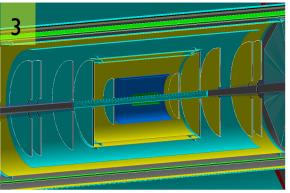
P range	I - 30 GeV/c	
η range	0 - 3.5 no units	
Magnetic Field	I.4 T BaBar	
PID	Single π - tracks	

- Geometric Parameters have significant impact in the performance of the trackers.
- The performance can be characterized by detector response (resolution, reconstruction efficiency, etc. for the tracks).
- A total of 11 geometric parameters (6 barrel radii and 5 disks) were deduced which could define the tracking design geometry for the inner tracker
- Along with the geometric parameters, different combinations of the technologies for barrels and disks could also affect the performance of the Tracker.
- II parameter along with the combinations of the technologies need to be explored efficiently to optimize the tracker design

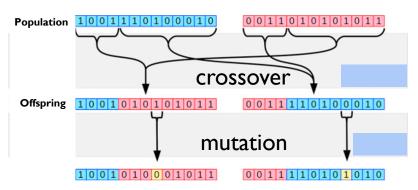

Could Multi Objective Optimization using Evolutionary Algorithm yield a design that performs better than the current baseline?


Inner Tracker: Optimization Pipelines

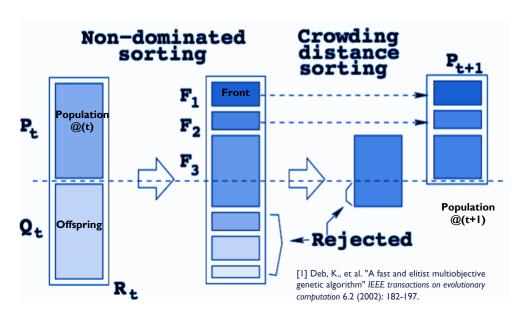

Inner Tracker

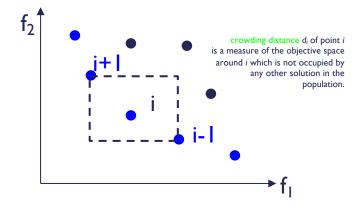

All with FST Disks

- Configuration 1: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (ITS2)
- Configuration 2: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (ITS2)
- Configuration 3: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (uRwell)
- Configuration 4: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (uRwell)



- * (Shown baseline designs)
- * Configurations with alternative Si Disk technology has also been explored
- * Results shown for configuration 4


Elitist Non-Dominated Sorting Genetic



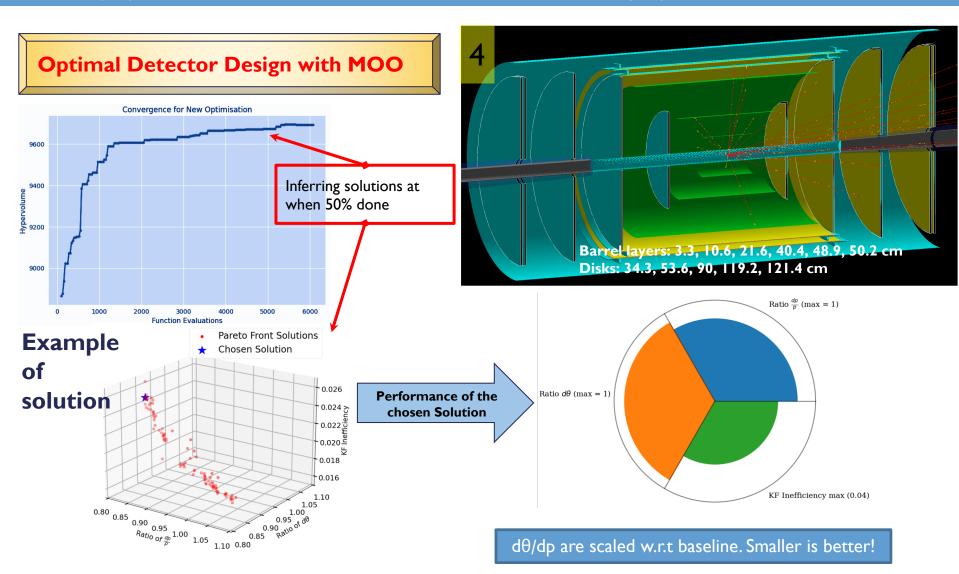
This is one of the most popular approach (>35k citations on google scholar), characterized by:

- Use of an elitist principle
- Explicit diversity preserving mechanism
- Emphasis in non-dominated solutions

The population R_t is classified in non-dominated fronts. Not all fronts can be accommodated in the N slots of available in the new population P_{t+1} . We use **crowding distance** to keep those points in the last front that contribute to the highest diversity.

Optimization Workflow

- Objective functions that are used for optimization (n_obj = 3)
 - Momentum resolution dp/p
 - Theta resolution $d\theta/\theta$
 - Kalman Filtering inefficiency (improving the tracking reconstruction ability of the algorithm)
 - We currently use average quantities for the objectives (see fig.)
 - \blacksquare dp/p, d θ , are ratios with respect to the baseline
 - Weights are based on errors on each of the objectives
- Constraints being used (n_const = 5)
 - The outermost barrel layer should be less than 51 cm
 - The max outer vertex layer (2nd Barrel layer) should be less than 15 cm
 - The 4th layer should be less than 45 cm
 - The forward most z has to be less than z = 125 cm
 - The minimum distance between any 2 layers/disks should be >= 1 cm (giving room for services)
- Validation of the solutions
 - \circ Validate by comparing optimal vs baseline d ϕ resolution, vertex resolution and reconstruction efficiency


$$\bar{x}_{\eta} = \frac{\sum_{p} x_{i} w_{i}}{\sum_{p} w_{i}}$$

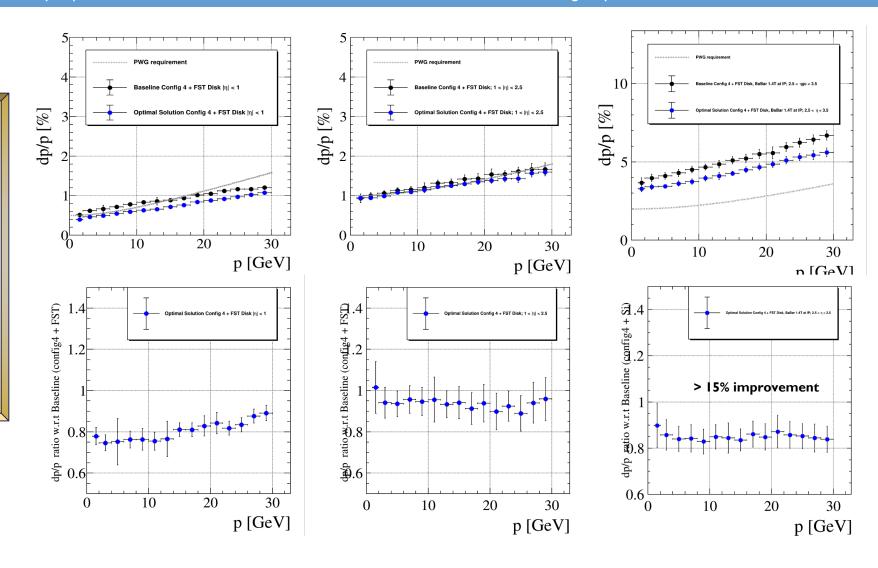
$$\bar{x} = \frac{\sum_{\eta}^{N_{\eta}} \bar{x_{\eta}}}{N_{\eta}}$$


Optimization:

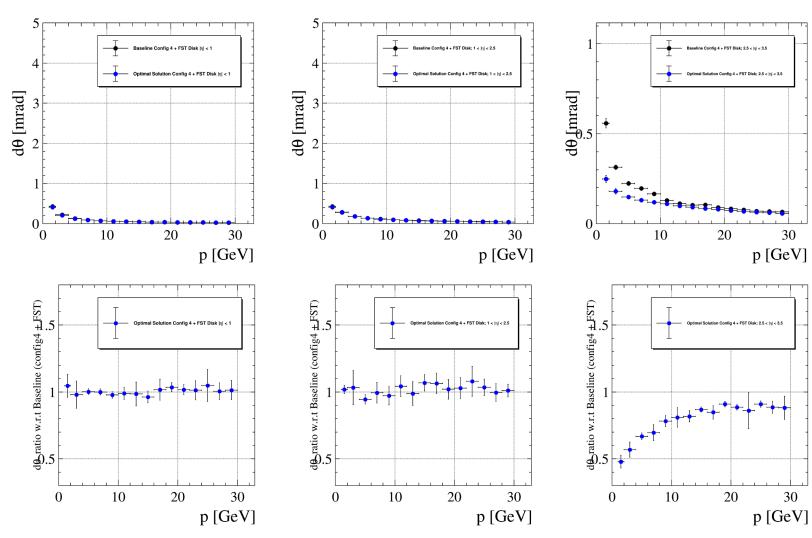
- \bullet $N_{vars} = 11$
- N_{gens} = 200
- $N_{\text{population}} = 100$
- Offspring = 50
- # Cores = 50

(Slurm at JLAB)

Pareto front solutions performance...



Optimal Design Solution


Barrel	Radii [cm]	Length [cm]	
Layer I	3.3	30.0	
Layer 2	10.6	30.0	
Layer 3	21.6	57.8	
Layer 4	40.4	108.1	
Layer 5	48.9	130.8	
Layer 6	50.2	134.2	

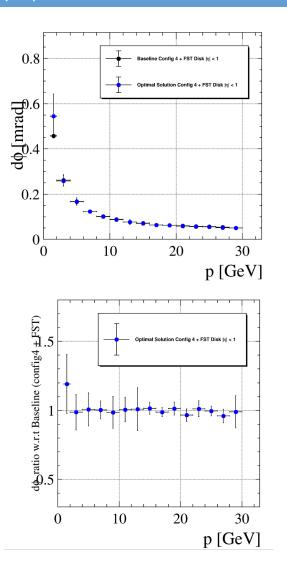
Forward FST Disks	Z position [cm]	RMin [cm]	RMax [cm]	Pitch [um]	Si Thickness [um]
Disk I	34.3	3.18	25.38	10	35
Disk 2	53.60	3.5	46.15	10	35
Disk 3	90	4.9	50.2	10	35
Disk 4	119.2	6.5	50.2	36.4	85
Disk 5	121.4	6.6	50.2	36.4	85

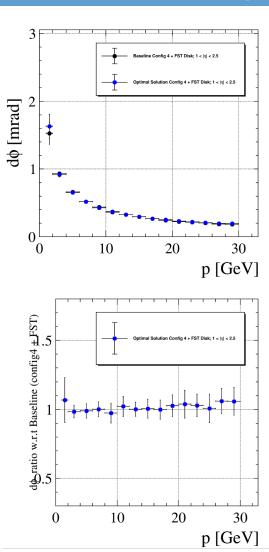
Magnetic Field = BaBar Field Map (1.4T @ Interaction Point) 300k Single π - tracks used for the optimisation

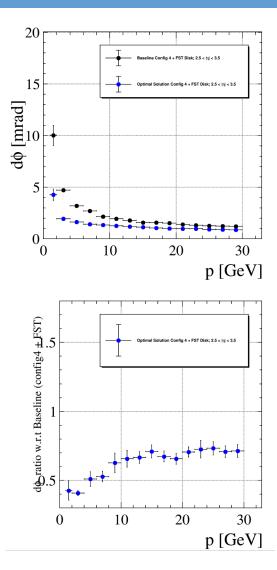
ECCE Detector Design Optimization with Al

p [GeV]

10


20


30


p [GeV]

KF Inefficiency Improvement Optimal/baseline - I **Baseline Ineff** Summary of KF Inefficiency of (Optimal/Baseline -1) Design -4.2% **-8.7**% 75 Generated Pseudo-rapidity 2.5 - 3.5 -2.0% 11.0% 3.2% 2.5% 2.5% 2.3% 2.2% 2.0% 2.2% 2.0% 2.1% **KFInEfficiency** 5.6% 93.2% 1 - 2.5 -8.6% 2.6% 2.6% -4.0% 45.7% 13.9% 8.1% 21.7% 31.7% 4.6% 39.1% **-9.2**% 2.3% 5.1% **-7.6**% 19.8% 0 - 1 -0.3% 1.1% 0.4% 0.3% 0.2% 0.3% 0.3% 0.2% 0.3% 0.3% 0.2% 0.2% 0.2% 0.3% 1 - 2 8 - 10 10 - 12 16 - 18 20 - 22 22 - 24 24 - 26 2 - 4 4 - 6 6 - 8 12 - 14 14 - 16 18 - 20 26 - 28 28 - 30 Generated Momenta p [GeV/c] Validation Reconstruction Reconstruction Efficiency (ϵ) $\approx 1.5 \times 10^{-10}$ Reconstruction Efficiency (e) Reconstruction Efficiency (ϵ) eline Config 4 + FST Disk |n| < 1 Efficiency 30 30 10 20 10 20

p [GeV]

Summary

- We have several ongoing AI detector optimization projects and an active AI working group in ECCE
- There are very promising results from the tracking detector optimization (C. Fanelli and K. Suresh)
 - Studying different detector configurations and keep seeing significant improvements!
- The tracking optimization framework is built to approximate the Pareto front solutions.
- Currently we are supporting 3 objectives (tracking resolutions, efficiency). The decision making is post hoc --- some solutions from the Pareto front can be rejected based on cost, risks etc. considerations.
 - We are optimizing the design space made only by geometry parameters. We can include other types of parameters and explore new technology/solutions as a part of optimization.
- An optimization on the backward region (with an asymmetric design compared to forward) is underway.